##plugins.themes.bootstrap3.article.main##

Three novel compounds, namely, 4-amino-5-(2,3,4,5,6-pentahydroxy-1-(4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl)hexyl)-2-thioxo-2,3-dihydropyrimidin-4(1H)-one SG-3, 3-methyl-5-(2,3,4,5,6-pentahydroxy-1-(4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl)hexyl)-2-thioxo-2,3-dihydropyrimidin-4(1H)-one-(2H)-ylamino)butanoic acid SG-4 and 2-(4-oxo-5-(2,3,4,5,6-pentahydroxy-1-(4-oxo-2-thioxo-1,2,3,4-tetrahydropyrimidin-5-yl)hexyl)-2-thioxo-2,3-dihydropyrimidin-4(1H)-one-2-phenylacetic acid SG-6 were synthesized from easily available, inexpensive, environmentally friendly starting materials (glucose, amino acid and thiobarbutric acid) and characterized by 1H-NMR, 13C-NMR and mass spectroscopy. the molecular modelling of these compounds was studied in Crystal structure of vaccinia virus thymidylate kinase , for the treatment of variola. Their binding motifs and drug-like properties were investigated. Results show that all compounds confirmed appropriate binding free energies; between –9.71 and –10.11 Kcal/mol . Since the novel molecules have high ligand-receptor binding interactions, they can be a powerful alternative to FDA approved drug Cidofovir.

References

  1. Damon I. Poxviruses. In: Knipe, D.M., Howley, P.M. (Eds.), Fields Virology. sixth ed., 2014, vol. 2. Lippincott, Williams and Wilkins, Philadelphia, pA, USA, p. 2160.
     Google Scholar
  2. Costantino V, Kunasekaran MP, Chughtai AA, MacIntyre CR. How valid are assumptions about re-emerging smallpox? A systematic review of parameters used in smallpox mathematical models. Mil Med., 2018; 183:e200–e207. https://doi.org/10.1093/milmed/usx092.
     Google Scholar
  3. Breman JG, Henderson DA. Diagnosis and management of smallpox. N Engl J Med., 2002, 346: 1300–1308. https://doi.org/10.1056/ NEJMra020025.
     Google Scholar
  4. Fenner FH, Arita I, Jezek Z, Ladnyi ID. Smallpox and its eradication. 1988. World Health Organization, Geneva, Switzerland.
     Google Scholar
  5. Sarkar JK, Mitra AC, Mukherjee MK, De SK, Mazumdar DG. Virus excretion in smallpox. 1. Excretion in the throat, urine, and conjunctiva of patients. Bull World Health Organ, 1973, 48:517–522.
     Google Scholar
  6. https://www.cdc.gov/smallpox/history/history.html#:~:text=The%20origin%20of%20smallpox%20is,century%20CE%20(Common%20Era).
     Google Scholar
  7. Henderson DA, Inglesby T V, Bartlett J G, Ascher M S, Eitzen E, JahrlingP B, et al. Smallpox as a biological weapon: medical and public health management. J. Am. Med. Assoc., 1999, 281, 2127–2137. 10.1001/jama.281.22.2127.
     Google Scholar
  8. Rotz LD, Dotson DA, Damon IK, Becher JA. Advisory Committee on Immunization, P., 2001. Vaccinia (smallpox) vaccine: recommendations of the advisory committee on immunization practices (ACIP), 2001. MMWR Recomm. Rep. (Morb. Mortal. Wkly. Rep.) 50, 1–25 quiz CE21-27.
     Google Scholar
  9. Bray M, Martinez M, Smee D F, Kefauver D, Thompson E, Huggins J W. Cidofovir protects mice against lethal aerosol or intranasal cowpox virus challenge. J. Infect. Dis., 2000,181, 1019–1023. 10.1086/315190.
     Google Scholar
  10. Cundy K.C. Clinical pharmacokinetics of the antiviral nucleotide analogs cidofovir and adefovir. Clin. Pharmacokinet, 1999, 36, 127–14.
     Google Scholar
  11. Russo A T, Grosenbach D W, Chinsangaram J, Honeychurch K M, Long P G, Lovejoy C, et.al. An overview of tecovirimat for smallpox treatment and expanded anti-orthopoxvirus applications. Expert Review of Anti-infective Therapy, 2021,19, 331–344. 10.1080/14787210.2020.1819791.
     Google Scholar
  12. Russo AT, Berhanu A, Bigger CB, Prigge J, Silvera PM, Grosenbach DW, Hruby D. Co-administration of tecovirimat and ACAM2000™ in non-human primates: Effect of tecovirimat treatment on ACAM2000 immunogenicity and efficacy versus lethal monkeypox virus challenge. Vaccine, 2020, 38, 644–654. 10.1016/j.vaccine.2019.10.049.
     Google Scholar
  13. Chan-Tack KM, Harrington PR, Choi S-Y, Myers L, O’Rear J, Seo S et.al. Assessing a drug for an eradicated human disease: US Food and Drug Administration review of tecovirimat for the treatment of smallpox. Lancet Infect. Dis, 2019, 19, e221–e224. 10.1016/S1473-3099(18)30788-6.
     Google Scholar
  14. Bastos LDC, De Souza FR, Guimarães AP, Sirouspour M, Guizado TRC, Forgione P, et.al. Virtual screening, docking, and dynamics of potential new inhibitors of dihydrofolate reductase from Yersinia pestis. J. Biomol. Struct. Dyn., 2016, 34, 2184–2198. 10.1080/07391102.2015.1110832.
     Google Scholar
  15. Guimarães AP, de Souza FR, Oliveira A A, Gonçalves A S, de Alencastro R B, Ramalho TC, França TCC. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox. Eur. J. Med. Chem., 2015, 91, 72–90. 10.1016/j.ejmech.2014.09.099.
     Google Scholar
  16. Trost L C, Rose M L, Khouri J, Keilholz L, Long J, Godin S J, Foster SA. The efficacy and pharmacokinetics of brincidofovir for the treatment of lethal rabbitpox virus infection: A model of smallpox disease. Antivir. Res., 2015, 117, 115–121. 10.1016/j.antiviral.2015.02.007.
     Google Scholar
  17. Damon I K, Damaso C R, McFadden G. Are We There Yet? The Smallpox Research Agenda Using Variola Virus. PLoS Pathog, 2014, 10, e1004108. 10.1371/journal.ppat.1004108.
     Google Scholar
  18. Guimarães A P, Ramalho T C, França TCC. Preventing the return of smallpox: Molecular modeling studies on thymidylate kinase fromVariola virus. J. Biomol. Struct. Dyn., 2014, 32, 1601–1612. 10.1080/07391102.2013.830578.
     Google Scholar
  19. Prichard M N, Kern E R. Orthopoxvirus targets for the development of new antiviral agents. Antivir. Res., 2012, 94, 111–125. 10.1016/j.antiviral.2012.02.012.
     Google Scholar
  20. Garcia D R, De Souza F R, Guimarães A P, Ramalho T C, De Aguiar A P, França T C C. Design of inhibitors of thymidylate kinase from Variola virus as new selective drugs against smallpox: Part II. J. Biomol. Struct. Dyn., 2019, 37, 4569–4579. 10.1080/07391102.2018.1554510.
     Google Scholar
  21. Merchlinsky M, Albright A, Olson V, Schiltz H, Merkeley T, Hughes C et.al. The development and approval of tecoviromat (TPOXX®), the first antiviral against smallpox. Antivir. Res., 2019, 168, 168–174. 10.1016/j.antiviral.2019.06.005.
     Google Scholar
  22. Nuth M, Guan H, Xiao Y, Kulp J L., Parker M H, Strobel E D, Isaacs S N, et.al. Mutation and structure guided discovery of an antiviral small molecule that mimics an essential C-Terminal tripeptide of the vaccinia D4 processivity factor. Antivir. Res., 2018, 162, 178–185. 10.1016/j.antiviral.2018.12.011.
     Google Scholar
  23. Chaudhuri S, Symons J A, Deval J. Innovation and trends in the development and approval of antiviral medicines: 1987–2017 and beyond. Antivir. Res., 2018, 155, 76–88. 10.1016/j.antiviral.2018.05.005.
     Google Scholar
  24. Chittick G, Morrison M, Brundage T, Nichols W.G. Short-term clinical safety profile of brincidofovir: A favorable benefit–risk proposition in the treatment of smallpox. Antivir. Res., 2017, 143, 269–277. 10.1016/j.antiviral.2017.01.009.
     Google Scholar
  25. Crump R, Korom M, Buller R M, Parker S. Buccal viral DNA as a trigger for brincidofovir therapy in the mousepox model of smallpox. Antivir. Res., 2017, 139, 112–116. 10.1016/j.antiviral.2016.12.015.
     Google Scholar
  26. Grossi IM, Foster S A, Gainey M R, Krile R T, Dunn J A, et.al. Efficacy of delayed brincidofovir treatment against a lethal rabbitpox virus challenge in New Zealand White rabbits. Antivir. Res., 2017, 143, 278–286. 10.1016/j.antiviral.2017.04.002.
     Google Scholar
  27. Kern ER. In vitro activity of potential anti-poxvirus agents. Antiviral Res., 2003, 57:35–40. 10.1016/s0166-3542(02)00198-5.
     Google Scholar
  28. Iglesias-Guerra F, Candela J I, Bautista J, Alcudia F, Vega-Pérez J M. Carbohydr. Res., 1999, 316, 71-84. 10.1016/S0008-6215(99)00030-0.
     Google Scholar
  29. Blaskovich M A T. Unusual Amino Acids in Medicinal Chemistry. Journal of Medicinal Chemistry, 2016, 59(24), 10807–10836. doi:10.1021/acs.jmedchem.6b00319.
     Google Scholar
  30. Han J, Konno H, Sato T, Soloshonok VA, Izawa K. Tailor-made amino acids in the design of small-molecule blockbusterdrugs. Eur J Med Chem, 2021,220:113448.
     Google Scholar
  31. Liu J, Han J, Izawa K, et al. Cyclic tailor-made amino acids inthe design of modern pharmaceuticals. Eur J Med Chem, 2020,208:112736.
     Google Scholar
  32. Mei H, Han J, White S, et al. Tailor-made amino acids andfluorinated motifs as prominent traits in modern pharmaceu-ticals. Chem A Eur J., 2020, 26(50):11349-11390.
     Google Scholar
  33. Ma JS. Unnatural amino acids in drug discovery. Chim Oggi-Chem Today, 2003, 21:65-68.
     Google Scholar
  34. Qiu W, Gu X, Soloshonok VA, Carducci MD, Hruby VJ. Stereoselective synthesis of conformationally constrainedreverse turn dipeptide mimetics. Tetrahedron Lett., 2001,42(2):145-148.
     Google Scholar
  35. Fosgerau K, Hoffmann T. Peptide therapeutics: Current statusand future directions. Drug Discov Today, 2015, 20(1):122-128.
     Google Scholar
  36. Mei H, Han J, Klika KD, et al. Applications of fluorine-containing amino acids for drug design. Eur J Med Chem, 2020,186:111826.
     Google Scholar
  37. Han J, Sorochinsky AE, Ono T, Soloshonok VA. Biomimetictransamination-a metal-free alternative to the reductive ami-nation. Application for generalized preparation of fluorine-containing amines and amino acids. Curr Org Synth, 2011,8:281-294.
     Google Scholar
  38. Stevenazzi A, Marchini M, Sandrone G, Vergani B,Lattanzio M. Amino acidic scaffolds bearing unnatural sidechains: An old idea generates new and versatile tools for thelife sciences. Bioorg Med Chem Lett, 2014,24(23):5349-5356.
     Google Scholar
  39. Sharma A, Noki S, Zamisa S J, Hazzah H A, Almarhoon Z M , El-Faham A. et.al. Exploiting the Thiobarbituric Acid Scaffold for Antibacterial Activity. ChemMedChem, 2018, 19;13(18):1923-1930.doi: 10.1002/cmdc.201800414.
     Google Scholar
  40. Rajamakia S, Innitzer A, Falciani C, Tintori C, Christ F, Witvrouw M. et.al. Exploration of novel thiobarbituric acid-, rhodanine- and thiohydantoin-based HIV-1 integrase inhibitors. Bioorg. Med. Chem. Lett, 2009, 19, 3615–3618. 10.1016/j.bmcl.2009.04.132.
     Google Scholar
  41. Bhatt P, Kumar M, Jha A. Design, Synthesis and Anticancer Evaluation of Oxa/Thiadiazolylhydrazones of Barbituric and Thiobarbituric Acid: A Collective In Vitro and In Silico Approach. Chemistry Select, 2018,3, 7060–7065. 10.1002/slct.201800832.
     Google Scholar
  42. Rani A. P, Bajaj K, Srivastava V K, Chandra R, Kumara A. Synthesis of Newer Indolyl/ Phenothiazinyl Substituted 2-Oxo/ Thiobarbituric Acid Derivatives as Potent Anticonvulsant Agents. Arzneimittelforschung, 2003, 53(5): 301-306. 10.1055/s-0031-1297113.
     Google Scholar
  43. Rathee P, Tonk RK, Dalal A, Ruhil MK, Kumar A. Synthesis and Application of Thiobarbituric Acid Derivatives as Antifungal Agents. Cell Mol Biol, 2016, 62: 141. 10.4172/1165-158X.1000141.
     Google Scholar
  44. Caillat C, Topalis D, Agrofoglio L A, Pochet S, Balzarini J, Deville-Bonne D. et.al Crystal structure of poxvirus thymidylate kinase: an unexpected dimerization has implications for antiviral therapy. Proceedings of the National Academy of Sciences, 2008, 105(44), 16900-16905.
     Google Scholar